com.unity.uiextensions/Scripts/Effects/ImageExtended.cs

1074 lines
40 KiB
C#
Raw Normal View History

/// Credit Ges
/// Sourced from - http://forum.unity3d.com/threads/scripts-useful-4-6-scripts-collection.264161/page-2#post-2062320
using System;
using System.Collections.Generic;
using UnityEngine.Serialization;
namespace UnityEngine.UI.Extensions
{
/// <summary>
/// Image is a textured element in the UI hierarchy.
/// </summary>
[AddComponentMenu("UI/Extensions/Image Extended")]
public class ImageExtended : MaskableGraphic, ISerializationCallbackReceiver, ILayoutElement, ICanvasRaycastFilter
{
public enum Type
{
Simple,
Sliced,
Tiled,
Filled
}
public enum FillMethod
{
Horizontal,
Vertical,
Radial90,
Radial180,
Radial360,
}
public enum OriginHorizontal
{
Left,
Right,
}
public enum OriginVertical
{
Bottom,
Top,
}
public enum Origin90
{
BottomLeft,
TopLeft,
TopRight,
BottomRight,
}
public enum Origin180
{
Bottom,
Left,
Top,
Right,
}
public enum Origin360
{
Bottom,
Right,
Top,
Left,
}
public enum Rotate
{
Rotate0,
Rotate90,
Rotate180,
Rotate270,
}
[FormerlySerializedAs("m_Frame")]
[SerializeField]
private Sprite m_Sprite;
public Sprite sprite { get { return m_Sprite; } set { if (SetPropertyUtility.SetClass(ref m_Sprite, value)) SetAllDirty(); } }
[NonSerialized]
private Sprite m_OverrideSprite;
public Sprite overrideSprite { get { return m_OverrideSprite == null ? sprite : m_OverrideSprite; } set { if (SetPropertyUtility.SetClass(ref m_OverrideSprite, value)) SetAllDirty(); } }
/// How the Image is drawn.
[SerializeField]
private Type m_Type = Type.Simple;
public Type type { get { return m_Type; } set { if (SetPropertyUtility.SetStruct(ref m_Type, value)) SetVerticesDirty(); } }
[SerializeField]
private bool m_PreserveAspect = false;
public bool preserveAspect { get { return m_PreserveAspect; } set { if (SetPropertyUtility.SetStruct(ref m_PreserveAspect, value)) SetVerticesDirty(); } }
[SerializeField]
private bool m_FillCenter = true;
public bool fillCenter { get { return m_FillCenter; } set { if (SetPropertyUtility.SetStruct(ref m_FillCenter, value)) SetVerticesDirty(); } }
/// Filling method for filled sprites.
[SerializeField]
private FillMethod m_FillMethod = FillMethod.Radial360;
public FillMethod fillMethod { get { return m_FillMethod; } set { if (SetPropertyUtility.SetStruct(ref m_FillMethod, value)) { SetVerticesDirty(); m_FillOrigin = 0; } } }
/// Amount of the Image shown. 0-1 range with 0 being nothing shown, and 1 being the full Image.
[Range(0, 1)]
[SerializeField]
private float m_FillAmount = 1.0f;
public float fillAmount { get { return m_FillAmount; } set { if (SetPropertyUtility.SetStruct(ref m_FillAmount, Mathf.Clamp01(value))) SetVerticesDirty(); } }
/// Whether the Image should be filled clockwise (true) or counter-clockwise (false).
[SerializeField]
private bool m_FillClockwise = true;
public bool fillClockwise { get { return m_FillClockwise; } set { if (SetPropertyUtility.SetStruct(ref m_FillClockwise, value)) SetVerticesDirty(); } }
/// Controls the origin point of the Fill process. Value means different things with each fill method.
[SerializeField]
private int m_FillOrigin;
public int fillOrigin { get { return m_FillOrigin; } set { if (SetPropertyUtility.SetStruct(ref m_FillOrigin, value)) SetVerticesDirty(); } }
[SerializeField]
private Rotate m_Rotate = Rotate.Rotate0;
public Rotate rotate { get { return m_Rotate; } set { if (SetPropertyUtility.SetStruct(ref m_Rotate, value)) SetVerticesDirty(); } }
// Not serialized until we support read-enabled sprites better.
private float m_EventAlphaThreshold = 1;
public float eventAlphaThreshold { get { return m_EventAlphaThreshold; } set { m_EventAlphaThreshold = value; } }
protected ImageExtended()
{ }
/// <summary>
/// Image's texture comes from the UnityEngine.Image.
/// </summary>
public override Texture mainTexture
{
get
{
return overrideSprite == null ? s_WhiteTexture : overrideSprite.texture;
}
}
/// <summary>
/// Whether the Image has a border to work with.
/// </summary>
public bool hasBorder
{
get
{
if (overrideSprite != null)
{
Vector4 v = overrideSprite.border;
return v.sqrMagnitude > 0f;
}
return false;
}
}
public float pixelsPerUnit
{
get
{
float spritePixelsPerUnit = 100;
if (sprite)
spritePixelsPerUnit = sprite.pixelsPerUnit;
float referencePixelsPerUnit = 100;
if (canvas)
referencePixelsPerUnit = canvas.referencePixelsPerUnit;
return spritePixelsPerUnit / referencePixelsPerUnit;
}
}
public virtual void OnBeforeSerialize() { }
public virtual void OnAfterDeserialize()
{
if (m_FillOrigin < 0)
m_FillOrigin = 0;
else if (m_FillMethod == FillMethod.Horizontal && m_FillOrigin > 1)
m_FillOrigin = 0;
else if (m_FillMethod == FillMethod.Vertical && m_FillOrigin > 1)
m_FillOrigin = 0;
else if (m_FillOrigin > 3)
m_FillOrigin = 0;
m_FillAmount = Mathf.Clamp(m_FillAmount, 0f, 1f);
}
/// Image's dimensions used for drawing. X = left, Y = bottom, Z = right, W = top.
private Vector4 GetDrawingDimensions(bool shouldPreserveAspect)
{
var padding = overrideSprite == null ? Vector4.zero : Sprites.DataUtility.GetPadding(overrideSprite);
var size = overrideSprite == null ? Vector2.zero : new Vector2(overrideSprite.rect.width, overrideSprite.rect.height);
Rect r = GetPixelAdjustedRect();
// Debug.Log(string.Format("r:{2}, size:{0}, padding:{1}", size, padding, r));
int spriteW = Mathf.RoundToInt(size.x);
int spriteH = Mathf.RoundToInt(size.y);
var v = overrideSprite == null ? new Vector4(0, 0, 1, 1) :
new Vector4(
padding.x / spriteW,
padding.y / spriteH,
(spriteW - padding.z) / spriteW,
(spriteH - padding.w) / spriteH);
if (shouldPreserveAspect && size.sqrMagnitude > 0.0f)
{
var spriteRatio = size.x / size.y;
var rectRatio = r.width / r.height;
if (spriteRatio > rectRatio)
{
var oldHeight = r.height;
r.height = r.width * (1.0f / spriteRatio);
r.y += (oldHeight - r.height) * rectTransform.pivot.y;
}
else
{
var oldWidth = r.width;
r.width = r.height * spriteRatio;
r.x += (oldWidth - r.width) * rectTransform.pivot.x;
}
}
v = new Vector4(
r.x + r.width * v.x,
r.y + r.height * v.y,
r.x + r.width * v.z,
r.y + r.height * v.w
);
return v;
}
public override void SetNativeSize()
{
if (overrideSprite != null)
{
float w = overrideSprite.rect.width / pixelsPerUnit;
float h = overrideSprite.rect.height / pixelsPerUnit;
rectTransform.anchorMax = rectTransform.anchorMin;
rectTransform.sizeDelta = new Vector2(w, h);
SetAllDirty();
}
}
/// <summary>
/// Update the UI renderer mesh.
/// </summary>
protected override void OnFillVBO(List<UIVertex> vbo)
{
switch (type)
{
case Type.Simple:
GenerateSimpleSprite(vbo, m_PreserveAspect);
break;
case Type.Sliced:
GenerateSlicedSprite(vbo);
break;
case Type.Tiled:
GenerateTiledSprite(vbo);
break;
case Type.Filled:
GenerateFilledSprite(vbo, m_PreserveAspect);
break;
}
}
#region Various fill functions
/// <summary>
/// Generate vertices for a simple Image.
/// </summary>
void GenerateSimpleSprite(List<UIVertex> vbo, bool preserveAspect)
{
var vert = UIVertex.simpleVert;
vert.color = color;
Vector4 v = GetDrawingDimensions(preserveAspect);
var uv = (overrideSprite != null) ? Sprites.DataUtility.GetOuterUV(overrideSprite) : Vector4.zero;
AddQuad(vbo, vert,
new Vector2(v.x, v.y), new Vector2(v.z, v.w),
new Vector2(uv.x, uv.y), new Vector2(uv.z, uv.w));
}
/// <summary>
/// Generate vertices for a 9-sliced Image.
/// </summary>
static readonly Vector2[] s_VertScratch = new Vector2[4];
static readonly Vector2[] s_UVScratch = new Vector2[4];
void GenerateSlicedSprite(List<UIVertex> vbo)
{
if (!hasBorder)
{
GenerateSimpleSprite(vbo, false);
return;
}
Vector4 outer, inner, padding, border;
if (overrideSprite != null)
{
outer = Sprites.DataUtility.GetOuterUV(overrideSprite);
inner = Sprites.DataUtility.GetInnerUV(overrideSprite);
padding = Sprites.DataUtility.GetPadding(overrideSprite);
border = overrideSprite.border;
}
else
{
outer = Vector4.zero;
inner = Vector4.zero;
padding = Vector4.zero;
border = Vector4.zero;
}
Rect rect = GetPixelAdjustedRect();
border = GetAdjustedBorders(border / pixelsPerUnit, rect);
padding = padding / pixelsPerUnit;
int offset = 4 - (int)rotate;
for (int i = 0; i < 4; ++i)
{
s_VertScratch[(4 - i / 2) % 4][i % 2] = padding[(i + offset) % 4];
s_VertScratch[1 + i / 2][i % 2] = border[(i + offset) % 4];
}
for (int i = 2; i < 4; ++i)
{
s_VertScratch[i].x = rect.width - s_VertScratch[i].x;
s_VertScratch[i].y = rect.height - s_VertScratch[i].y;
}
for (int i = 0; i < 4; ++i)
{
s_VertScratch[i].x += rect.x;
s_VertScratch[i].y += rect.y;
}
s_UVScratch[0] = new Vector2(outer.x, outer.y);
s_UVScratch[1] = new Vector2(inner.x, inner.y);
s_UVScratch[2] = new Vector2(inner.z, inner.w);
s_UVScratch[3] = new Vector2(outer.z, outer.w);
var uiv = UIVertex.simpleVert;
uiv.color = color;
for (int x = 0; x < 3; ++x)
{
int x2 = x + 1;
for (int y = 0; y < 3; ++y)
{
if (!m_FillCenter && x == 1 && y == 1)
continue;
int y2 = y + 1;
int vx1 = x, vy1 = y;
int vx2 = x2, vy2 = y2;
for (int i = 0; i < (int)rotate; ++i)
{
int t1 = 4 - vy1 - 1;
vy1 = vx1; vx1 = t1;
int t2 = 4 - vy2 - 1;
vy2 = vx2; vx2 = t2;
}
int ux1 = x, uy1 = y;
int ux2 = x2, uy2 = y2;
if ((int)rotate >= 2)
{
ux1 = x2; ux2 = x;
}
if (((int)rotate + 1) % 4 >= 2)
{
uy1 = y2; uy2 = y;
}
if (Mathf.Abs(s_VertScratch[vx1].x - s_VertScratch[vx2].x) < Mathf.Epsilon)
continue;
if (Mathf.Abs(s_VertScratch[vy1].y - s_VertScratch[vy2].y) < Mathf.Epsilon)
continue;
AddQuad(vbo, uiv,
new Vector2(s_VertScratch[vx1].x, s_VertScratch[vy1].y),
new Vector2(s_VertScratch[vx2].x, s_VertScratch[vy2].y),
new Vector2(s_UVScratch[ux1].x, s_UVScratch[uy1].y),
new Vector2(s_UVScratch[ux2].x, s_UVScratch[uy2].y));
}
}
}
/// <summary>
/// Generate vertices for a tiled Image.
/// </summary>
static readonly Vector2[] s_UVTiled = new Vector2[2];
void GenerateTiledSprite(List<UIVertex> vbo)
{
Vector4 outer, inner, border;
Vector2 spriteSize;
if (overrideSprite != null)
{
outer = Sprites.DataUtility.GetOuterUV(overrideSprite);
inner = Sprites.DataUtility.GetInnerUV(overrideSprite);
border = overrideSprite.border;
spriteSize = overrideSprite.rect.size;
}
else
{
outer = Vector4.zero;
inner = Vector4.zero;
border = Vector4.zero;
spriteSize = Vector2.one * 100;
}
Rect rect = GetPixelAdjustedRect();
float tileWidth = (spriteSize.x - border.x - border.z) / pixelsPerUnit;
float tileHeight = (spriteSize.y - border.y - border.w) / pixelsPerUnit;
border = GetAdjustedBorders(border / pixelsPerUnit, rect);
int offset = 4 - (int)rotate;
int rx = (0 + offset) % 4, ry = (1 + offset) % 4, rz = (2 + offset) % 4, rw = (3 + offset) % 4;
var v = UIVertex.simpleVert;
v.color = color;
// Min to max max range for tiled region in coordinates relative to lower left corner.
float xMin = border[rx];
float xMax = rect.width - border[rz];
float yMin = border[ry];
float yMax = rect.height - border[rw];
// Safety check. Useful so Unity doesn't run out of memory if the sprites are too small.
// Max tiles are 100 x 100.
if ((xMax - xMin) > tileWidth * 100 || (yMax - yMin) > tileHeight * 100)
{
tileWidth = (xMax - xMin) / 100;
tileHeight = (yMax - yMin) / 100;
}
if ((int)rotate % 2 == 1)
{
float t = tileWidth;
tileWidth = tileHeight;
tileHeight = t;
}
if (m_FillCenter)
{
for (float y1 = yMin; y1 < yMax; y1 += tileHeight)
{
s_UVTiled[0] = new Vector2(inner.x, inner.y);
s_UVTiled[1] = new Vector2(inner.z, inner.w);
float y2 = y1 + tileHeight;
if (y2 > yMax)
{
int k1 = 1 - (int)rotate / 2, k2 = 1 - (int)rotate % 2;
s_UVTiled[k1][k2] = s_UVTiled[1 - k1][k2] + (s_UVTiled[k1][k2] - s_UVTiled[1 - k1][k2]) * (yMax - y1) / (y2 - y1);
y2 = yMax;
}
for (float x1 = xMin; x1 < xMax; x1 += tileWidth)
{
float x2 = x1 + tileWidth;
if (x2 > xMax)
{
int k1 = ((int)rotate + 3) % 4 / 2, k2 = (int)rotate % 2;
s_UVTiled[k1][k2] = s_UVTiled[1 - k1][k2] + (s_UVTiled[k1][k2] - s_UVTiled[1 - k1][k2]) * (xMax - x1) / (x2 - x1);
x2 = xMax;
}
AddQuad(vbo, v, new Vector2(x1, y1) + rect.position, new Vector2(x2, y2) + rect.position, s_UVTiled[0], s_UVTiled[1]);
}
}
}
if (!hasBorder)
return;
// Bottom and top tiled border
for (int i = 0; i < 2; ++i)
{
float y1 = i == 0 ? 0 : yMax;
float y2 = i == 0 ? yMin : rect.height;
if (Mathf.Abs(y1 - y2) < Mathf.Epsilon)
continue;
s_UVTiled[0] = GetRotatedUV(inner, 0, i == 0 ? outer : inner, i == 0 ? 1 : 3);
s_UVTiled[1] = GetRotatedUV(inner, 2, i == 0 ? inner : outer, i == 0 ? 1 : 3);
RotatePairUV(s_UVTiled);
for (float x1 = xMin; x1 < xMax; x1 += tileWidth)
{
float x2 = x1 + tileWidth;
if (x2 > xMax)
{
int k1 = ((int)rotate + 3) % 4 / 2, k2 = (int)rotate % 2;
s_UVTiled[k1][k2] = s_UVTiled[1 - k1][k2] + (s_UVTiled[k1][k2] - s_UVTiled[1 - k1][k2]) * (xMax - x1) / (x2 - x1);
x2 = xMax;
}
AddQuad(vbo, v,
new Vector2(x1, y1) + rect.position,
new Vector2(x2, y2) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
}
// Left and right tiled border
for (int i = 0; i < 2; ++i)
{
float x1 = i == 0 ? 0 : xMax;
float x2 = i == 0 ? xMin : rect.width;
if (Mathf.Abs(x1 - x2) < Mathf.Epsilon)
continue;
s_UVTiled[0] = GetRotatedUV(i == 0 ? outer : inner, i == 0 ? 0 : 2, inner, 1);
s_UVTiled[1] = GetRotatedUV(i == 0 ? inner : outer, i == 0 ? 0 : 2, inner, 3);
RotatePairUV(s_UVTiled);
for (float y1 = yMin; y1 < yMax; y1 += tileHeight)
{
float y2 = y1 + tileHeight;
if (y2 > yMax)
{
int k1 = 1 - (int)rotate / 2, k2 = 1 - (int)rotate % 2;
s_UVTiled[k1][k2] = s_UVTiled[1 - k1][k2] + (s_UVTiled[k1][k2] - s_UVTiled[1 - k1][k2]) * (yMax - y1) / (y2 - y1);
y2 = yMax;
}
AddQuad(vbo, v,
new Vector2(x1, y1) + rect.position,
new Vector2(x2, y2) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
}
// Corners
if (Mathf.Abs(border[rx]) > Mathf.Epsilon &&
Mathf.Abs(border[ry]) > Mathf.Epsilon)
{
s_UVTiled[0] = GetRotatedUV(outer, 0, outer, 1);
s_UVTiled[1] = GetRotatedUV(inner, 0, inner, 1);
RotatePairUV(s_UVTiled);
AddQuad(vbo, v,
new Vector2(0, 0) + rect.position,
new Vector2(xMin, yMin) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
if (Mathf.Abs(border[rz]) > Mathf.Epsilon &&
Mathf.Abs(border[ry]) > Mathf.Epsilon)
{
s_UVTiled[0] = GetRotatedUV(inner, 2, outer, 1);
s_UVTiled[1] = GetRotatedUV(outer, 2, inner, 1);
RotatePairUV(s_UVTiled);
AddQuad(vbo, v,
new Vector2(xMax, 0) + rect.position,
new Vector2(rect.width, yMin) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
if (Mathf.Abs(border[rx]) > Mathf.Epsilon &&
Mathf.Abs(border[rw]) > Mathf.Epsilon)
{
s_UVTiled[0] = GetRotatedUV(outer, 0, inner, 3);
s_UVTiled[1] = GetRotatedUV(inner, 0, outer, 3);
RotatePairUV(s_UVTiled);
AddQuad(vbo, v,
new Vector2(0, yMax) + rect.position,
new Vector2(xMin, rect.height) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
if (Mathf.Abs(border[rz]) > Mathf.Epsilon &&
Mathf.Abs(border[rw]) > Mathf.Epsilon)
{
s_UVTiled[0] = GetRotatedUV(inner, 2, inner, 3);
s_UVTiled[1] = GetRotatedUV(outer, 2, outer, 3);
RotatePairUV(s_UVTiled);
AddQuad(vbo, v,
new Vector2(xMax, yMax) + rect.position,
new Vector2(rect.width, rect.height) + rect.position,
s_UVTiled[0], s_UVTiled[1]);
}
}
Vector2 GetRotatedUV(Vector4 sX, int iX, Vector4 sY, int iY)
{
for (int i = 0; i < (int)rotate; i++)
{
Vector4 tS = sX;
sX = sY; sY = tS;
int tI = (iX + 3) % 4;
iX = iY - 1; iY = tI;
}
return new Vector2(sX[iX], sY[iY]);
}
void RotatePairUV(Vector2[] uv)
{
if ((int)rotate / 2 == 1)
{
float t = uv[0].x;
uv[0].x = uv[1].x;
uv[1].x = t;
}
if (((int)rotate + 1) / 2 == 1)
{
float t = uv[0].y;
uv[0].y = uv[1].y;
uv[1].y = t;
}
}
static readonly Vector3[] s_VertQuad = new Vector3[4];
static readonly Vector2[] s_UVQuad = new Vector2[4];
void AddQuad(List<UIVertex> vbo, UIVertex v, Vector2 posMin, Vector2 posMax, Vector2 uvMin, Vector2 uvMax)
{
s_VertQuad[0] = new Vector3(posMin.x, posMin.y, 0);
s_VertQuad[1] = new Vector3(posMin.x, posMax.y, 0);
s_VertQuad[2] = new Vector3(posMax.x, posMax.y, 0);
s_VertQuad[3] = new Vector3(posMax.x, posMin.y, 0);
s_UVQuad[0] = new Vector2(uvMin.x, uvMin.y);
s_UVQuad[1] = new Vector2(uvMin.x, uvMax.y);
s_UVQuad[2] = new Vector2(uvMax.x, uvMax.y);
s_UVQuad[3] = new Vector2(uvMax.x, uvMin.y);
int offset = (int)rotate;
for (int i = 0; i < 4; i++)
{
v.position = s_VertQuad[i];
v.uv0 = s_UVQuad[(i + offset) % 4];
vbo.Add(v);
}
}
Vector4 GetAdjustedBorders(Vector4 border, Rect rect)
{
for (int axis = 0; axis <= 1; axis++)
{
// If the rect is smaller than the combined borders, then there's not room for the borders at their normal size.
// In order to avoid artefacts with overlapping borders, we scale the borders down to fit.
float combinedBorders = border[axis] + border[axis + 2];
float rectSize = rect.size[(axis + (int)rotate % 2) % 2];
if (rectSize < combinedBorders && combinedBorders != 0)
{
float borderScaleRatio = rectSize / combinedBorders;
border[axis] *= borderScaleRatio;
border[axis + 2] *= borderScaleRatio;
}
}
return border;
}
/// <summary>
/// Generate vertices for a filled Image.
/// </summary>
static readonly Vector2[] s_Xy = new Vector2[4];
static readonly Vector2[] s_Uv = new Vector2[4];
void GenerateFilledSprite(List<UIVertex> vbo, bool preserveAspect)
{
if (m_FillAmount < 0.001f)
return;
Vector4 v = GetDrawingDimensions(preserveAspect);
Vector4 outer = overrideSprite != null ? Sprites.DataUtility.GetOuterUV(overrideSprite) : Vector4.zero;
UIVertex uiv = UIVertex.simpleVert;
uiv.color = color;
int offset = 4 - (int)rotate;
int rx = (0 + offset) % 4, ry = (1 + offset) % 4, rz = (2 + offset) % 4, rw = (3 + offset) % 4;
// Horizontal and vertical filled sprites are simple -- just end the Image prematurely
if (m_FillMethod == FillMethod.Horizontal || m_FillMethod == FillMethod.Vertical)
{
if (fillMethod == FillMethod.Horizontal)
{
float fill = (outer[rz] - outer[rx]) * m_FillAmount;
if (m_FillOrigin == 1)
{
v.x = v.z - (v.z - v.x) * m_FillAmount;
outer[rx] = outer[rz] - fill;
}
else
{
v.z = v.x + (v.z - v.x) * m_FillAmount;
outer[rz] = outer[rx] + fill;
}
}
else if (fillMethod == FillMethod.Vertical)
{
float fill = (outer[rw] - outer[ry]) * m_FillAmount;
if (m_FillOrigin == 1)
{
v.y = v.w - (v.w - v.y) * m_FillAmount;
outer[ry] = outer[rw] - fill;
}
else
{
v.w = v.y + (v.w - v.y) * m_FillAmount;
outer[rw] = outer[ry] + fill;
}
}
}
s_Xy[0] = new Vector2(v.x, v.y);
s_Xy[1] = new Vector2(v.x, v.w);
s_Xy[2] = new Vector2(v.z, v.w);
s_Xy[3] = new Vector2(v.z, v.y);
s_Uv[(0 + offset) % 4] = new Vector2(outer.x, outer.y);
s_Uv[(1 + offset) % 4] = new Vector2(outer.x, outer.w);
s_Uv[(2 + offset) % 4] = new Vector2(outer.z, outer.w);
s_Uv[(3 + offset) % 4] = new Vector2(outer.z, outer.y);
if (m_FillAmount < 1f)
{
float tx0 = outer.x;
float ty0 = outer.y;
float tx1 = outer.z;
float ty1 = outer.w;
if (fillMethod == FillMethod.Radial90)
{
if (RadialCut(s_Xy, s_Uv, m_FillAmount, m_FillClockwise, m_FillOrigin))
{
for (int i = 0; i < 4; ++i)
{
uiv.position = s_Xy[i];
uiv.uv0 = s_Uv[i];
vbo.Add(uiv);
}
}
return;
}
if (fillMethod == FillMethod.Radial180)
{
for (int side = 0; side < 2; ++side)
{
float fx0, fx1, fy0, fy1;
int even = m_FillOrigin > 1 ? 1 : 0;
if (m_FillOrigin == 0 || m_FillOrigin == 2)
{
fy0 = 0f;
fy1 = 1f;
if (side == even) { fx0 = 0f; fx1 = 0.5f; }
else { fx0 = 0.5f; fx1 = 1f; }
}
else
{
fx0 = 0f;
fx1 = 1f;
if (side == even) { fy0 = 0.5f; fy1 = 1f; }
else { fy0 = 0f; fy1 = 0.5f; }
}
s_Xy[0].x = Mathf.Lerp(v.x, v.z, fx0);
s_Xy[1].x = s_Xy[0].x;
s_Xy[2].x = Mathf.Lerp(v.x, v.z, fx1);
s_Xy[3].x = s_Xy[2].x;
s_Xy[0].y = Mathf.Lerp(v.y, v.w, fy0);
s_Xy[1].y = Mathf.Lerp(v.y, v.w, fy1);
s_Xy[2].y = s_Xy[1].y;
s_Xy[3].y = s_Xy[0].y;
s_Uv[0].x = Mathf.Lerp(tx0, tx1, fx0);
s_Uv[1].x = s_Uv[0].x;
s_Uv[2].x = Mathf.Lerp(tx0, tx1, fx1);
s_Uv[3].x = s_Uv[2].x;
s_Uv[0].y = Mathf.Lerp(ty0, ty1, fy0);
s_Uv[1].y = Mathf.Lerp(ty0, ty1, fy1);
s_Uv[2].y = s_Uv[1].y;
s_Uv[3].y = s_Uv[0].y;
float val = m_FillClockwise ? fillAmount * 2f - side : m_FillAmount * 2f - (1 - side);
if (RadialCut(s_Xy, s_Uv, Mathf.Clamp01(val), m_FillClockwise, ((side + m_FillOrigin + 3) % 4)))
{
for (int i = 0; i < 4; ++i)
{
uiv.position = s_Xy[i];
uiv.uv0 = s_Uv[i];
vbo.Add(uiv);
}
}
}
return;
}
if (fillMethod == FillMethod.Radial360)
{
for (int corner = 0; corner < 4; ++corner)
{
float fx0, fx1, fy0, fy1;
if (corner < 2) { fx0 = 0f; fx1 = 0.5f; }
else { fx0 = 0.5f; fx1 = 1f; }
if (corner == 0 || corner == 3) { fy0 = 0f; fy1 = 0.5f; }
else { fy0 = 0.5f; fy1 = 1f; }
s_Xy[0].x = Mathf.Lerp(v.x, v.z, fx0);
s_Xy[1].x = s_Xy[0].x;
s_Xy[2].x = Mathf.Lerp(v.x, v.z, fx1);
s_Xy[3].x = s_Xy[2].x;
s_Xy[0].y = Mathf.Lerp(v.y, v.w, fy0);
s_Xy[1].y = Mathf.Lerp(v.y, v.w, fy1);
s_Xy[2].y = s_Xy[1].y;
s_Xy[3].y = s_Xy[0].y;
s_Uv[0].x = Mathf.Lerp(tx0, tx1, fx0);
s_Uv[1].x = s_Uv[0].x;
s_Uv[2].x = Mathf.Lerp(tx0, tx1, fx1);
s_Uv[3].x = s_Uv[2].x;
s_Uv[0].y = Mathf.Lerp(ty0, ty1, fy0);
s_Uv[1].y = Mathf.Lerp(ty0, ty1, fy1);
s_Uv[2].y = s_Uv[1].y;
s_Uv[3].y = s_Uv[0].y;
float val = m_FillClockwise ?
m_FillAmount * 4f - ((corner + m_FillOrigin) % 4) :
m_FillAmount * 4f - (3 - ((corner + m_FillOrigin) % 4));
if (RadialCut(s_Xy, s_Uv, Mathf.Clamp01(val), m_FillClockwise, ((corner + 2) % 4)))
{
for (int i = 0; i < 4; ++i)
{
uiv.position = s_Xy[i];
uiv.uv0 = s_Uv[i];
vbo.Add(uiv);
}
}
}
return;
}
}
// Fill the buffer with the quad for the Image
for (int i = 0; i < 4; ++i)
{
uiv.position = s_Xy[i];
uiv.uv0 = s_Uv[i];
vbo.Add(uiv);
}
}
/// <summary>
/// Adjust the specified quad, making it be radially filled instead.
/// </summary>
static bool RadialCut(Vector2[] xy, Vector2[] uv, float fill, bool invert, int corner)
{
// Nothing to fill
if (fill < 0.001f) return false;
// Even corners invert the fill direction
if ((corner & 1) == 1) invert = !invert;
// Nothing to adjust
if (!invert && fill > 0.999f) return true;
// Convert 0-1 value into 0 to 90 degrees angle in radians
float angle = Mathf.Clamp01(fill);
if (invert) angle = 1f - angle;
angle *= 90f * Mathf.Deg2Rad;
// Calculate the effective X and Y factors
float cos = Mathf.Cos(angle);
float sin = Mathf.Sin(angle);
RadialCut(xy, cos, sin, invert, corner);
RadialCut(uv, cos, sin, invert, corner);
return true;
}
/// <summary>
/// Adjust the specified quad, making it be radially filled instead.
/// </summary>
static void RadialCut(Vector2[] xy, float cos, float sin, bool invert, int corner)
{
int i0 = corner;
int i1 = ((corner + 1) % 4);
int i2 = ((corner + 2) % 4);
int i3 = ((corner + 3) % 4);
if ((corner & 1) == 1)
{
if (sin > cos)
{
cos /= sin;
sin = 1f;
if (invert)
{
xy[i1].x = Mathf.Lerp(xy[i0].x, xy[i2].x, cos);
xy[i2].x = xy[i1].x;
}
}
else if (cos > sin)
{
sin /= cos;
cos = 1f;
if (!invert)
{
xy[i2].y = Mathf.Lerp(xy[i0].y, xy[i2].y, sin);
xy[i3].y = xy[i2].y;
}
}
else
{
cos = 1f;
sin = 1f;
}
if (!invert) xy[i3].x = Mathf.Lerp(xy[i0].x, xy[i2].x, cos);
else xy[i1].y = Mathf.Lerp(xy[i0].y, xy[i2].y, sin);
}
else
{
if (cos > sin)
{
sin /= cos;
cos = 1f;
if (!invert)
{
xy[i1].y = Mathf.Lerp(xy[i0].y, xy[i2].y, sin);
xy[i2].y = xy[i1].y;
}
}
else if (sin > cos)
{
cos /= sin;
sin = 1f;
if (invert)
{
xy[i2].x = Mathf.Lerp(xy[i0].x, xy[i2].x, cos);
xy[i3].x = xy[i2].x;
}
}
else
{
cos = 1f;
sin = 1f;
}
if (invert) xy[i3].y = Mathf.Lerp(xy[i0].y, xy[i2].y, sin);
else xy[i1].x = Mathf.Lerp(xy[i0].x, xy[i2].x, cos);
}
}
#endregion
public virtual void CalculateLayoutInputHorizontal() { }
public virtual void CalculateLayoutInputVertical() { }
public virtual float minWidth { get { return 0; } }
public virtual float preferredWidth
{
get
{
if (overrideSprite == null)
return 0;
if (type == Type.Sliced || type == Type.Tiled)
return Sprites.DataUtility.GetMinSize(overrideSprite).x / pixelsPerUnit;
return overrideSprite.rect.size.x / pixelsPerUnit;
}
}
public virtual float flexibleWidth { get { return -1; } }
public virtual float minHeight { get { return 0; } }
public virtual float preferredHeight
{
get
{
if (overrideSprite == null)
return 0;
if (type == Type.Sliced || type == Type.Tiled)
return Sprites.DataUtility.GetMinSize(overrideSprite).y / pixelsPerUnit;
return overrideSprite.rect.size.y / pixelsPerUnit;
}
}
public virtual float flexibleHeight { get { return -1; } }
public virtual int layoutPriority { get { return 0; } }
public virtual bool IsRaycastLocationValid(Vector2 screenPoint, Camera eventCamera)
{
if (m_EventAlphaThreshold >= 1)
return true;
Sprite sprite = overrideSprite;
if (sprite == null)
return true;
Vector2 local;
RectTransformUtility.ScreenPointToLocalPointInRectangle(rectTransform, screenPoint, eventCamera, out local);
Rect rect = GetPixelAdjustedRect();
// Convert to have lower left corner as reference point.
local.x += rectTransform.pivot.x * rect.width;
local.y += rectTransform.pivot.y * rect.height;
local = MapCoordinate(local, rect);
// Normalize local coordinates.
Rect spriteRect = sprite.textureRect;
Vector2 normalized = new Vector2(local.x / spriteRect.width, local.y / spriteRect.height);
// Convert to texture space.
float x = Mathf.Lerp(spriteRect.x, spriteRect.xMax, normalized.x) / sprite.texture.width;
float y = Mathf.Lerp(spriteRect.y, spriteRect.yMax, normalized.y) / sprite.texture.height;
try
{
return sprite.texture.GetPixelBilinear(x, y).a >= m_EventAlphaThreshold;
}
catch (UnityException e)
{
Debug.LogError("Using clickAlphaThreshold lower than 1 on Image whose sprite texture cannot be read. " + e.Message + " Also make sure to disable sprite packing for this sprite.", this);
return true;
}
}
private Vector2 MapCoordinate(Vector2 local, Rect rect)
{
Rect spriteRect = sprite.rect;
if (type == Type.Simple || type == Type.Filled)
return new Vector2(local.x * spriteRect.width / rect.width, local.y * spriteRect.height / rect.height);
Vector4 border = sprite.border;
Vector4 adjustedBorder = GetAdjustedBorders(border / pixelsPerUnit, rect);
for (int i = 0; i < 2; i++)
{
if (local[i] <= adjustedBorder[i])
continue;
if (rect.size[i] - local[i] <= adjustedBorder[i + 2])
{
local[i] -= (rect.size[i] - spriteRect.size[i]);
continue;
}
if (type == Type.Sliced)
{
float lerp = Mathf.InverseLerp(adjustedBorder[i], rect.size[i] - adjustedBorder[i + 2], local[i]);
local[i] = Mathf.Lerp(border[i], spriteRect.size[i] - border[i + 2], lerp);
continue;
}
else
{
local[i] -= adjustedBorder[i];
local[i] = Mathf.Repeat(local[i], spriteRect.size[i] - border[i] - border[i + 2]);
local[i] += border[i];
continue;
}
}
return local;
}
}
}