Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement finding out to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its support knowing (RL) step, which was utilized to improve the design's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, indicating it's equipped to break down complex inquiries and reason through them in a detailed way. This assisted reasoning process enables the design to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation model that can be incorporated into numerous workflows such as agents, sensible thinking and information interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion parameters, enabling effective inference by routing questions to the most appropriate expert "clusters." This approach allows the design to specialize in different problem domains while maintaining general efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more effective models to mimic the behavior and reasoning patterns of the bigger DeepSeek-R1 design, using it as an instructor model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid damaging content, and evaluate models against crucial security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, develop a limit increase request and connect to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Set up consents to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, avoid damaging content, and assess models against essential security requirements. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The design detail page offers necessary details about the design's capabilities, pricing structure, and application guidelines. You can discover detailed usage directions, including sample API calls and code bits for combination. The design supports numerous text generation tasks, consisting of content development, code generation, and question answering, utilizing its reinforcement finding out optimization and CoT thinking abilities.
The page also consists of deployment choices and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, get in a variety of circumstances (between 1-100).
6. For Instance type, select your circumstances type. For optimum efficiency with DeepSeek-R1, wiki.snooze-hotelsoftware.de a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up advanced security and infrastructure settings, including virtual private cloud (VPC) networking, service function approvals, and encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, you may wish to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the release is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive interface where you can explore different prompts and adjust model criteria like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum results. For instance, content for reasoning.
This is an excellent way to explore the model's reasoning and text generation abilities before incorporating it into your applications. The play ground offers instant feedback, helping you understand how the design reacts to different inputs and letting you tweak your prompts for ideal results.
You can rapidly test the design in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out inference using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends out a demand to generate text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient approaches: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model internet browser displays available designs, with details like the service provider name and model capabilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card shows essential details, consisting of:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, yewiki.org enabling you to use Amazon Bedrock APIs to conjure up the model
5. Choose the model card to view the design details page.
The design details page of the following details:
- The model name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical requirements.
- Usage guidelines
Before you release the design, it's suggested to review the design details and license terms to verify compatibility with your usage case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, use the automatically created name or produce a customized one.
- For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the variety of circumstances (default: 1). Selecting proper instance types and counts is important for cost and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for precision. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the design.
The release process can take a number of minutes to finish.
When deployment is complete, your endpoint status will alter to InService. At this moment, the model is ready to accept reasoning requests through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will display relevant metrics and surgiteams.com status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To prevent unwanted charges, finish the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases. - In the Managed deployments area, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious options utilizing AWS services and accelerated calculate. Currently, he is concentrated on developing strategies for setiathome.berkeley.edu fine-tuning and optimizing the reasoning efficiency of large language models. In his downtime, Vivek enjoys treking, viewing motion pictures, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist clients accelerate their AI journey and unlock business value.